College Algebra
6.7-6.8 Homework

Use the following equations for this homework. Show your work for the most amount of points!

\[A = Pe^{rt} \quad A = P\left(1 + \frac{r}{n}\right)^{nt} \quad y = a(1 - r)^t \quad y = a(1 + r)^t \]

Find the amount that result from each investment.
1. $500 invested at 8% compounded quarterly after a period of 2 \frac{1}{2} \text{ years}

Solve each problem.
3. Jerome will be buying a used car for $15,000 in 3 years. How much money should he ask his parents for now so that, if he invested it at 5% compounded continuously, he will have enough to buy the car?

5. Suppose $500 is invested at a 6% annual interest compounded twice a year. In how many years will the investment be worth $1000?

7. For Dave to buy a new car comparably equipped to the one he bought years ago would cost $12,000. Since Dave bought the car, the inflation rate for cars like his has been at an average annual rate of 5.1%. If Dave originally paid $8400 for the car, how long ago did he buy it?

9. A Global Positional Satellite (GPS) system uses satellite information to locate ground position. Ray’s surveying firm bought a GPS system for $12,500. The GPS depreciated by a fixed rate of 6% and is now worth $8600. How long ago did Ray buy the GPS system?

11. The size P of a certain insect population at time t (in days) obeys the function \[P(t) = 500e^{0.02t} \]
 \(a) \) Determine the number of insects at t=0 days
 \(b) \) What is the population after 10 days?
 \(c) \) When will the insect population reach 800?
 \(d) \) When will the insect population double?

13. A colony of bacteria that grows according to the law of uninhibited growth is modeled by the function \[N(t) = 100e^{0.045t} \], where N is measured in grams and t is measured in days.
 \(a) \) Determine the initial amount of bacteria.
 \(b) \) What is the population after 5 days?
 \(c) \) How long will it take for the population to reach 140 grams?
 \(d) \) What is the doubling time for the population?